40^2+x^2=97^2

Simple and best practice solution for 40^2+x^2=97^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 40^2+x^2=97^2 equation:



40^2+x^2=97^2
We move all terms to the left:
40^2+x^2-(97^2)=0
We add all the numbers together, and all the variables
x^2-7809=0
a = 1; b = 0; c = -7809;
Δ = b2-4ac
Δ = 02-4·1·(-7809)
Δ = 31236
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{31236}=\sqrt{4*7809}=\sqrt{4}*\sqrt{7809}=2\sqrt{7809}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{7809}}{2*1}=\frac{0-2\sqrt{7809}}{2} =-\frac{2\sqrt{7809}}{2} =-\sqrt{7809} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{7809}}{2*1}=\frac{0+2\sqrt{7809}}{2} =\frac{2\sqrt{7809}}{2} =\sqrt{7809} $

See similar equations:

| 6x-(3x-2(3x-5))+8=33 | | 7/m+48=49 | | 7.6^(d+3)=57.2 | | 6x+4x=117 | | 6x-15+x+15=180 | | 9(x+2/3)-10=5x-8/3 | | 4y-(12+y)=5 | | 2184-604800+7x+16=4x-143 | | 3z²=7z-11 | | -1={5+x}{6} | | a-3.6=20 | | 11^2y=6 | | 8/f=56 | | 3x+2x-12=4x-10 | | y=15–5 | | 4^(x/3)=2^(6) | | x2−14x=−40 | | 13/20x+11/3-1/4=11/16 | | 19+3n=-31-2n | | 0.08+0.14(3000-y)=0.28y | | q+6=q=-4 | | g-4=g=-3 | | 15=(75(x-3)^.0)/(60/(x-10)^2) | | 15=(75(x-3))/(60/(x-10)^2) | | 0=w^2+9w-30 | | 0=w^2+9w-3 | | 15=(75√x−3)÷(60÷(x−10)^2) | | 2x+22=5x-10 | | 110+3x+2x=x | | (5x-7)^(2)-1=8 | | 7-x/8+x/5=x+2/4 | | 4x/5-1/2=2-1/5 |

Equations solver categories